GT Calculations: Difference between revisions

no edit summary
No edit summary
No edit summary
Line 34:
 
 
=== '''Calculating recipe tiers''' ===
 
Finding the tier of a recipe is simple enough, however it's a little more complex when you try to use equations. We all know 1-32v is LV, 33-128 is MV, and so on, but putting this in a formula is a little involved. The basic idea is to use something that equates to a base 4 log to calculate amounts of times that the voltage is 4x over 8v. Rounding this value up will give you the tier, for values 8v and above. If you are using a program with loops, you can set this up the way GT would use, however I'm not going to be explaining that here. The idea would be simply to replace logs with a loop that will determine the same value the log does.
Line 43:
 
 
=== '''Calculating Recipe time with variables''' ===
The next important value to calculate will be the length of a recipe. This will be accounting overclocks, speed bonuses, and parallels. This value is equated to Recipe_Time/(Speed_Bonus*Parallels*Overclock_Favtor^(Recipe_Tier/Running_Tier)). Running_Tier is whatever tier you choose to run the process at. We will call this value Real_Recipe_Time as it's the time you will be experiencing with any given process.
Line 51:
 
 
==='''Initial machine quantities'''===
 
Now it's time to give a start point to your processing chain. You can do this by manually setting a desired output rate, setting a specific machine quantity yourself, or accounting for a given input. For something such as ore processing, it could be easier to account for an input rate, while something like power gen would function best with setting a desired fuel output. If you have one particularly expensive machine in your chain, it could be best to set the quantity of those, in order to maximize efficiency of a set amount of that machine. If you want to put more work into it, you could give a setup a fixed power usage, and calculate everything based on that, however that is more complex. Whatever you do, you'll need to set one value in order to calculate everything else.
Line 60:
 
 
==='''Calculating Input/Output rates'''===
 
This will be almost the reverse of using a fixed output to define Machine_Quantity. Here you will use Input_Quantity and Output_Quantity for each item/fluid in a recipe you wish to evaluate. This number is primarily for calculating other Machine_Quantities, so you can simply calculate values for items you wish to view outputs for, or items you are generating within the processing chain. This value is calculated through
Line 66:
Machine_Quantity*Output(or)Input_Quantity/Real_Recipe_Time. This will provide an input or output value in ticks for any given item. We will ascribe the names Input_Rate and Output_Rate to these values.
 
==='''Calculating Machine_Quantity'''===
 
This will be the value that tells you how many machines will be needed. The build requirement at a given tier, to reach a given output. This value is calculated with an Output_Quantity from one machine, and an Input_Quantity from another. If calculating a machine (a) that will input something created by another quantity defined machine (b), it will use the equation of Output_Rate(b)*Real_Recipe_Time(a)/Input_Quantity(a). If you are defining an output based on another machines input, you would simply flip Output_Rate to Input_Rate, and Input_Quantity to Output_Quantity. This will give you a value of machines needing to be built. The small issue here is that machine quantities can be fractional, which doesn't work. Rounding this number up in a 2nd step will display how many you will need, however it's important to keep the fractional values for speed calcs. If you need to run 7.5 machines, then build 8, but supply them with the same input rates the 7.5 needed, you will be running 7 of them constantly, and one 50% of the time, resulting in the speeds of 7.5 machines.
 
==='''Power calculations'''===
 
When it comes to calculating power to machines in a setup, you'll need to get a few values. First off, a general overall power usage is important. This is calculated as Recipe_Voltage*Machine_Quantity*Overclock_Power^(Tier-Recipe_Tier) for any machine that doesn't have dynamic parallels. If a machine can run parallels itself, such as ++ multis, you will need another equation to calculate this, as you won't be overclocking as much as normal. Once you calculate this value for each step, simply summing them together gets your average power draw.
70

edits