Biotechnology

From GT New Horizons
Revision as of 00:37, 29 November 2020 by Spluff5 (talk | contribs) (→‎The Vat)

Welcome to Spluff's guide to the biotechnology elements brought to GT:NH by Bartwork's Biolab and Vat. Here, you'll find a guide to using these machines as well as a primer to the real science behind how they work, which will hopefully make understanding how to use them easier.

The Biolab

The Vat

Population Dynamics

The sigmoidal population curve that describes how the amount of bacterial biomass changes over time in the Vat.

A population of bacteria in a closed system, also called biomass, will grow according to a sigmoidal population curve (right), where growth rate is initially slow due to a small starting population, increases in rate as the population increases, and then slows again as the resources of the environment become too scarce to support such a large population. This last concept is known as the environment's carrying capacity (K), which is the maximum amount of bacterial biomass the system can support. In GT:NH, K is dictated by the size of the Vat's output hatch.

In order to keep the size of a growing population stable, bacterial biomass must be removed from the machine as fast as the bacteria are replicating. Therefore, to maximize the production of the Vat, the bacteria must be maintained at the population that gives the highest growth rate. This is illustrated on the curve, where the growth rate can be seen as the steepness of the slope of the curve. At a biomass of ½K, the curve is the steepest and so the rate at which the biomass can be drawn off without reducing the population is the highest. Mechanically, this manifests as the Vat gaining up to a 1000x bonus to production is the output hatch is maintained at half capacity at all times.

Radiation

Some more exotic and alien species of bacteria require radiation to grow properly. The strength of this radiation is measured in sieverts (Sv). Radiation is supplied to the vat via the radio hatch, which come in HV-UV voltages, each tier having 1 kg greater buffer capacity than the last. Rods or long rods of radioactive material are placed in the radio hatch where they are consumed, filling the buffer and supplying radiation at the given material's sievert level for a given amount of time. Rods supply 1 kg to the buffer while long rods supply 2 kg.

Some recipes require very specific different sievert levels. Instead of having to hunt for a different material for each of these recipes, a shutter can be closed to block some of the radiation to reach a more customizable value. Using a screwdriver on the radio hatch will open the radiation shutter interface, where up to 100 Sv of radiation can be blocked. Note that blocking radiation does NOT make the radioactive material last longer.