Jump to content

Electricity: Difference between revisions

Remove efficiency column. What does that mean?
m (Generators -> Generator)
(Remove efficiency column. What does that mean?)
Line 73:
 
=== Amperage ===
Amps are pushed, not pulled. "Drawn" is synonymous with "accepted" here.
 
Machines and energy hatches can only draw amps in full to fill their internal EU buffers. The capacity of the internal buffer is listed as "Capacity:" in the machine's or hatch's tooltip. When processing a recipe, a machine will draw from its internal buffer. The current contents of the internal buffer can be checked with the [[Portable Scanner]].
 
The maximum amount of amps a machine can draw is either listed on its tooltip or recipe-dependent. The minimum amperage of a recipe can be found in [[NEI]]. If no amperage is listed, the recipe's minimum amperage is 1. A machine can draw atup mostto a maximum of <math>\frac{2 \times \text{Recipe Usage EU/t}}{\text{Voltage Tier EU Limit}} + 1</math> moreamps ampto thanfill its internal buffer. This means that if the amperagemachine ofisn't processing a recipe, it will draw 1 amp to refill the internal buffer.
 
Several common amperages of GregTech machines can be found in the table below. "Drawing" means "draws up to".
Line 119 ⟶ 121:
GregTech EU can be transferred using GregTech [[Cables]].
 
Rather than priority by destination, power priority is given by cardinal direction. Cables will push power in the following priority:
<!--T:15-->
 
# Down
# Up
# North
# South
# West
# East
 
When producing power, each generator will always attempt to empty all of its internal buffer at once. This can cause one generator in a cable network to use fuel more rapidly than another, with order depending on tile entity processing and changing on chunk reloads.<!--T:15-->
 
All GT Cables have a max Voltage, max Amperage and a Loss/Meter/Ampere, indicated on their tooltip:
*'''Cables which receive amps containing more EU than their maximum Voltage will catch fire and melt.'''
Line 135 ⟶ 147:
<!--T:19-->
Below is a table of the current properties of various types of cables in GregTech:
 
 
{| {{STDT|sortable c_12}}
! Material !! Max Voltage !! 1x Insulated Cable Max Amp !! Loss/m/amp in EU !! Efficiency compared to Tin Wire !! Length until 0 Power !! Most efficient number of Cables between Batteries
|-
! Tin
| 32 || 1 || 1 || 1.00 || 32 || 5.906
|-
! Cobalt
| 32 || 2 || 2 || 0.50 || 16 || 0
|-
! Lead
| 32 || 2 || 2 || 0.50 || 16 || 0
|-
! Zinc
| 32 || 1 || 1 || 1.00 || 32 || 5.906
|-
! Soldering Alloy
| 32 || 1 || 1 || 1.00 || 32 || 5.906
|-
! Iron
| 128 || 2 || 3 || 1.33 || 43 || 3.970
|-
! Nickel
| 128 || 3 || 3 || 1.33 || 43 || 3.970
|-
! Cupronickel
| 128 || 2 || 3 || 1.33 || 43 || 3.970
|-
! Copper
| 128 || 1 || 2 || 2.00 || 64 || 9.151
|-
! Annealed Copper
| 128 || 1 || 1 || 4.00 || 128 || 23.12
|-
! Kanthal
| 512 || 4 || 3 || 5.33 || 171 || 20.81
|-
! Gold
| 512 || 3 || 2 || 8.00 || 256 || 34.48
|-
! Electrum
| 512 || 2 || 2 || 8.00 || 256 || 34.48
|-
! Silver
| 512 || 1 || 1 || 16.00 || 512 || 74.96
|-
! Blue Alloy
| 512 || 2 || 1 || 16.00 || 512 || 74.96
|-
! Energetic Alloy
| 512 || 2 || 2 || 8.00 || 256 || 34.48
|-
! Nichrome
| 2,048 || 3 || 4 || 16.00 || 512 || 50.63
|-
! Steel
| 2,048 || 2 || 2 || 32.00 || 1024 || 109.8
|-
! Black Steel
| 2,048 || 3 || 2 || ? || ? || ?
|-
! Titanium
| 2,048 || 4 || 2 || ? || ? || ?
|-
! TPV-Alloy
| 2,048 || 6 || 1 || ? || ? || ?
|-
! Vibrant Alloy
| 2,048 || 4 || 2 || ? || ? || ?
|-
! Aluminium
| 2,048 || 1 || 1 || 64.00 || 2048 || 227.8
|-
! Graphene*
| 8,192 || 1 || 2 || 256.00 || 8192 || 671.7
|-
! Osmium
| 8,192 || 4 || 2 || 128.00 || 4096 || 330.2
|-
! Platinum
| 8,192 || 2 || 1 || 256.00 || 8192 || 671.7
|-
! Tungstensteel
| 8,192 || 3 || 2 || ? || ? || ?
|-
! Tungsten
| 8,192 || 2 || 2 || ? || ? || ?
|-
! Melodic Alloy
| 8,192 || 4 || 2 || 128.00 || 4096 || 330.2
|-
! HSS-G
| 32,768 || 4 || 2 || 512.00 || 16384 || 966.5
|-
! Niobium-Titanium
| 32,768 || 4 || 2 || 512.00 || 16384 || 966.5
|-
! Vanadium-Gallium
| 32,768 || 4 || 2 || 512.00 || 16384 || 966.5
|-
! Yttrium Barium Cuprate
| 32,768 || 4 || 4 || 256.00 || 8192 || 475.2
|-
! Stellar Alloy
| 32,768 || 6 || 4 || ? || ? || ?
|-
! HSS-E
| 32,768 || 6 || 2 || ? || ? || ?
|-
! Osmiridium
| 32,768 || 8 || 1 || ? || ? || ?
|-
! Naquadah
| 131,072 || 2 || 2 || ? || ? || ?
|-
! Trinium
| 131,072 || 6 || 4 || ? || ? || ?
|-
! Signalium
| 131,072 || 12 || 4 || ? || ? || ?
|-
! Naquadah Alloy
| 524,288 || 2 || 4 || ? || ? || ?
|-
! Duranium
| 524,288 || 1 || 8 || ? || ? || ?
|-
! Fluxed Electrum
| 524,288 || 3 || 1 || ? || ? || ?
|-
! Lumiium
| 524,288 || 8 || 16 || ? || ? || ?
|-
! Ichorium*
| 2,097,152 || 12 || 2 || ? || ? || ?
|-
! Bedrockium
| 2,097,152 || 2 || 1 || ? || ? || ?
|-
! HSS-S
| 2,097,152 || 6 || 4 || ? || ? || ?
|-
! Draconium
| 8,388,608 || 8 || 4 || ? || ? || ?
|-
! Nether Star
| 33,554,432 || 4 || 4 || ? || ? || ?
|-
! Hypogen
| 33,554,432 || 8 || 0 || inf. || inf. || inf.
|-
! Quantium
| 134,217,728 || 2 || 4 || ? || ? || ?
|-
! Black Plutonium*
| 536,870,912 || 1 || 16 || ? || ? || ?
|-
! Awakened Draconium
| 2,147,483,640 || 1 || 16 || ? || ? || ?
|-
! Red Alloy
| 8 || 1 || 0 || inf. || inf. || inf.
|-
! Redstone Alloy
| 32 || 1 || 0 || inf. || inf. || inf.
|-
! Superconductor MV*
| 128 || 4 || 0 || inf. || inf. || inf.
|-
! Superconductor HV*
| 512 || 6 || 0 || inf. || inf. || inf.
|-
! Superconductor EV*
| 2,048 || 8 || 0 || inf. || inf. || inf.
|-
! Superconductor IV*
| 8,192 || 12 || 0 || inf. || inf. || inf.
|-
! Superconductor LuV*
| 32,768 || 16 || 0 || inf. || inf. || inf.
|-
! Superconductor ZPM*
| 131,072 || 24 || 0 || inf. || inf. || inf.
|-
! Superconductor UV*
| 524,288 || 32 || 0 || inf. || inf. || inf.
|-
! Superconductor UHV*
| 2,097,152 || 48 || 0 || inf. || inf. || inf.
|-
! Superconductor UEV*
| 8,388,608 || 64 || 0 || inf. || inf. || inf.
|-
! Superconductor UIV*
| 33,554,432 || 64 || 0 || inf. || inf. || inf.
|-
! Superconductor UMV*
| 134,217,728 || 64 || 0 || inf. || inf. || inf.
|-
! Infinity
| 2,147,483,640 || 8,192 || 0 || inf. || inf. || inf.
|-
! SpaceTime
| 2,147,483,640 || 1,000,000 || 0 || inf. || inf. || inf.
|-
! Superconductor Base MV*
| 128 || 1 || 2 || ? || ? || ?
|-
! Superconductor Base HV*
| 512 || 2 || 8 || ? || ? || ?
|-
! Superconductor Base EV*
| 2,048 || 3 || 16 || ? || ? || ?
|-
! Superconductor Base IV*
| 8,192 || 4 || 64 || ? || ? || ?
|-
! Superconductor Base LuV*
| 32,768 || 6 || 256 || ? || ? || ?
|-
! Superconductor Base ZPM*
| 131,072 || 8 || 1,024 || ? || ? || ?
|-
! Superconductor Base UV*
| 524,288 || 12 || 4,096 || ? || ? || ?
|-
! Superconductor Base UHV*
| 2,097,152 || 16 || 16,384 || ? || ? || ?
|-
! Superconductor Base UEV*
| 8,388,608 || 24 || 65,536 || ? || ? || ?
|-
! Superconductor Base UIV*
| 33,554,432 || 32 || 262,144 || ? || ? || ?
|-
! Superconductor Base UMV*
| 134,217,728 || 32 || 1,048,576 || ? || ? || ?
|}
 
Line 387 ⟶ 397:
'''Any GT Block outputting EU has an energy loss on output.''' This means there is no such thing as lossless power transfer. A power outputting singleblock will take <math>8\times4^{tier}+2^{max(0, tier-1)}</math> EU from its internal buffer and output <math>8\times4^{tier}</math> EU (which is always the maximum EU one amp of that voltage tier can hold). For example, a [[LV]] [[Combustion Generator]] draws 33 EU from its internal buffer to generate 1 amp holding 32 EU. The energy lost is therefore <math>2^{max(0, tier-1)}</math>. ULV is an exception, having the same loss value as LV, i.e. 1 EU.
 
{| {{STDT|sortablec_01 c_12sortable}}
! Tier !! Output !! Loss !! Loss in % !! Energy used
|-
!ULV
Cookies help us deliver our services. By using our services, you agree to our use of cookies.